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Abstract 2 

A growing body of research shows the importance of land use/cover change (LULCC) on 3 

modifying the earth system.  Land surface models are used to stimulate land-atmosphere 4 

dynamics at the macro- (regional to global) scale, but bias and uncertainty remain that need to be 5 

addressed, before the importance of LULCC is fully realized.  In this study, we propose a 6 

method of improving LULCC estimates for land surface modelling exercises.  The method yields 7 

continuous (annual) long-term (30-year) estimates of LULCC driven by socio-ecological 8 

geospatial predictors available seamlessly across sub-Saharan Africa that can be used for both 9 

retrospective and prospective analyses.  The method was developed with 2,252 5x5 km
2
 sample 10 

frames of the proportion of several land cover types in Kenya over multiple years.  Forty-three 11 

socio-ecological predictors were evaluated for model development.  Machine learning was used 12 

for data reduction and simple (functional) relationships defined by generalized additive models 13 

were constructed on a subset of the highest ranked predictors (p ≤ 10) to estimate LULCC.  The 14 

predictors explained 62% and 65% of the variance in the proportion of agriculture and natural 15 

vegetation, respectively, but were less successful at estimating more descriptive land cover types.  16 
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In each case, population density on an annual basis was the highest ranked predictor.  The 1 

approach was compared to a commonly used remote sensing classification procedure, given the 2 

wide use of such techniques for macro-scale LULCC detection, and out-performed it for each 3 

land cover type.  The approach was used to demonstrate significant trends in expanding 4 

(declining) agricultural (natural vegetation) land cover in Kenya from 1983-2012, with the 5 

largest increases (declines) occurring in densely populated high agricultural production zones. 6 

Key words: earth system; land use/cover change; population-environment; remote sensing; 7 

vegetation function8 
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1. Introduction 1 

Land use/cover change (LULCC) is an important concern for global environmental 2 

sustainability, because it can adversely affect surface albedo and heating (Davin and de Noblet-3 

Ducoudré, 2010); evapotranspiration and other components of the hydrologic cycle (Sterling et 4 

al., 2013); local to regional climate with the direct coupling, local coupling, or indirect recycling 5 

of surface moisture (Makarieva et al., 2013); global climate via carbon and other greenhouse gas 6 

emissions (Anderson-Teixeira and DeLucia, 2011); and ecosystem services worsened by these 7 

impacts (Turner et al., 2013).  Land surface models, which can be coupled to a regional or global 8 

climate model, are used to simulate land-atmosphere interactions retrospectively or prospectively 9 

(Pitman, 2003) to identify intervention “hotspots” or develop realistic land management 10 

scenarios at the macro- (regional to global) scale (Turner et al., 2007).  In general, spatially-11 

explicit LULCC is not an input to land surface models, but is instead represented by structural 12 

(e.g. leaf area index) or physiological (e.g. stomatal resistance) changes in vegetation.  LULCC 13 

is then mapped in parallel to characterize these changes.  Even though the importance of LULCC 14 

in modifying the earth system has been established and methodologies exist to quantify its 15 

impact, studies remain few, due in part to the inadequacy of LULCC estimates (Pielke et al., 16 

2011).  In order to further land-atmosphere interaction research, LULCC models must be 17 

developed that provide consistent estimates over long (pre-1981) time frames, regular (annual) 18 

intervals, and large spatial domains at moderate (5 km) spatial resolution; are projectable 50-100 19 

years into the future; and use the same classification approach (Meiyappan et al., 2014; 20 

Rounsevell et al., 2014; Verburg et al., 2011). 21 

Heistermann et al. (2006) reviews the two primary categories of macro-scale LULCC 22 

models (geographic and economic) while Schaldach and Priess (2008) and Rounsevell et al. 23 
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(2014) include reviews of integrated approaches that combine the strengths of both categories.  1 

The Conversion of Land Use and its Effects (CLUE) model (Veldkamp and Fresco, 1996; 2 

Verburg et al., 2002) is an example of a geographic technique.  It identifies important socio- 3 

(population, economy, society, politics and planning, culture, and technology) ecological 4 

(climate, vegetation, soil, topography, and hydrology) predictors from observed LULCC data, 5 

which are related to each other using multivariate regression or other statistical technique, and 6 

then cellular automata are used to simulate competition between the predicted land use/cover 7 

types and neighboring grid cells based on these relationships over baseline or projected periods.  8 

Decision rules are typically used iteratively to guarantee realistic land use/cover transitions 9 

occur.  LandSHIFT (Alcamo et al., 2011) is an example of an economic approach, because 10 

supply (land use/cover) is distributed on a grid cell basis by demand.  Supply is determined from 11 

national estimates of crop yield and the net primary productivity of grasslands.   Multi-criteria 12 

analysis, which involves applying cost functions and land use constraints based on socio-13 

ecological inputs, is used to define demand hierarchically and disaggregate supply over baseline 14 

or projected periods.  Integrated approaches (e.g. CLUMondo: van Asselen and Verburg, 2013) 15 

are becoming more common, because they more adequately account for LULCC processes and 16 

the interaction of demand and trade with supply than economic or geographic models, 17 

respectively.  Like most geographic and economic models, however, integrated models have a 18 

sound theoretical basis, but are not widely used for macro-scale applications, because of data 19 

inconsistencies and incongruities and model complexity that can propagate error, as well as, the 20 

time and other resources needed to operate them.  Earth observation (remote sensing) models are 21 

an important sub-category of the geographic approach, because they overcome many of these 22 

challenges, making their operational use at the macro-scale more feasible. 23 
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Hansen and Loveland (2012) and Ban et al., (2015) present recent reviews of macro-scale 1 

remote sensing-based LULCC modeling.  Remote sensing approaches use multivariate statistical 2 

techniques to classify land cover types based on the spectral or textural characteristics of gridded 3 

satellite data (DeFries et al., 1995).  These approaches are simpler than integrated approaches, 4 

because they tend to capture change at a single resolution directly with no interaction between 5 

adjacent pixels.  Remote sensing approaches, therefore, have the potential to reach higher model 6 

parsimony than integrated approaches, and require less time for processing and considerably 7 

fewer data types.  Early remote sensing approaches involved daily coarse spatial resolution 8 

(8km) Advanced Very High Resolution Radiometer (AVHRR) data available from 1981.  Large 9 

disagreement and uncertainties in the models, due to mixed pixel effects from small land 10 

use/cover patch size, as well diverse classification systems and methods, have limited their use at 11 

the macro-scale (Lepers et al., 2005).  Improved computational storage and processing and 12 

consensus on classification has facilitated the creation of consistent global LULCC maps at 13 

Landsat (30m) resolution (Giri et al., 2013).  GlobeLand30 (Chen et al., 2015), for example, uses 14 

a pixel-object-knowledge-based approach to classify Landsat images from spectrally-derived 15 

vegetation indices globally in 2000 and 2010.  The use of Landsat data alone poses serious 16 

challenges to modeling LULCC on an annual basis: persistent cloud cover, particularly in the 17 

tropics during the primary growing season, and a 16-day revisit cycle, makes retrieval of cloud-18 

free pixels difficult; the Landsat platforms have been retired (Landsat 5), have failed (Landsat 6), 19 

suffer from technical problems (Landsat 7), or are only recently active (Landsat 8).  To improve 20 

the temporal resolution and continuity of classification, other products, such as the Global Forest 21 

Change product (Hansen et al., 2010), fuse Moderate-resolution Imaging Spectroradiometer 22 

(MODIS) data available every 1-2 days at 250-500m spatial resolution with Landsat data.  But 23 
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these products are only available over the MODIS era (2000-present), making long-term 1 

classification infeasible.  In short, the major drawback of remote sensing approaches is that the 2 

temporal range and continuity necessary for long-term annual global change detection are often 3 

sacrificed for high (≤ 500m) spatial resolution.  Finally, remote sensing data is not projected 50-4 

100 years into the future or available pre-1981 like other socio-ecological data, such as 5 

population density, precipitation, or temperature, limiting their use for retrospective or 6 

prospective analysis. 7 

The purpose of this study was to propose a simple (functional) way to map LULCC at the 8 

macro-scale at 5 km resolution on an annual basis using socio-ecological predictors that are 9 

available pre-1981 and projected 50-100 years into the future in order to facilitate land-10 

atmosphere modeling and research.  The method was developed using sample frames consisting 11 

of continuous land cover developed from multi-year aerial and ground surveys in Kenya over a 12 

30-year period and socio-ecological predictors that are available seamlessly across sub-Saharan 13 

Africa (SSA).  The approach is compared with remote sensing predictors that have been used to 14 

classify land cover types based on their unique phenology.  Kenya is an ideal location to develop 15 

such a method, because like many countries in SSA, data is scarce compared to the Global 16 

North, and the impact of land modification on people and the environment is high (Lambin et al., 17 

2003).  In addition: 1) population density is highest in the most agriculturally productive areas 18 

due to unequitable land distribution and poor infrastructure (Jayne and Muyanga, 2012), making 19 

ecological determinants that are primarily used to map LULCC potentially less relevant (Pricope 20 

et al., 2013); 2) agriculture is the primary source of livelihood and crops are mostly rainfed 21 

(Ngetich et al., 2014); and 3) inter-annual rainfall variability is high and frequently causes 22 

devastating droughts and floods (Held and Soden, 2006). 23 
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2. Data and Methods 1 

2.1 Study area 2 

 Aerial surveys were conducted in 1983, 1985, 2012, and 2013, to assess changes in land 3 

cover over parts of the Lake Victoria basin and central region of Kenya (Machakos and Makueni 4 

areas).  The surveys yielded 2,252 5x5 km
2
 grid frames covering 28,150 km

2
 or approximately 5 

47% of Kenya’s arable lands (Figure 1).  Olofsson et al. (2012) has suggested that 5x5 km
2
 6 

frames are appropriate for macro-scale LULCC analyses.   The lakeshore and lowlands of Lake 7 

Victoria basin are primarily tropical with one long rain season that extends from February to 8 

September (UNEP, 2008).  The neighboring highlands follow a bimodal pattern and annual totals 9 

are higher than near the lakeshore, due to warm moist westerlies during the West African 10 

monsoon and orographic uplift.  Central Kenya is drier and has two distinct rain seasons: long 11 

rains (March-June) and short monsoon rains (October- December).  The Machakos area, which 12 

includes Muranga', Kiambu, and the northern part of Machakos, is humid subtropical and 13 

therefore wetter than Makueni to the south-east, which is semi-arid. 14 

For each frame, the probability (proportion) of various land cover types was classified at 15 

two levels of specificity: level one (agriculture, natural vegetation, urban, and miscellaneous) 16 

and level two (crops, fallow, shrubs, savanna, wetlands, forest, and agroforestry).  Continuous 17 

data were used, because at 5 km resolution, spatial heterogeneity makes discrete classification 18 

impractical.  Agriculture included agroforestry, defined here as trees on a farm; crops (banana, 19 

coffee, maize, sugar cane, tea, wheat, and others); and pasture/fallow.  Natural vegetation 20 

included savanna, shrubs (open and closed), wetlands (perennial and permanent), and forest 21 

(evergreen and deciduous).  Urban included built up structures, such as roads, homes, and towns.  22 

Miscellaneous included fish ponds and other water bodies, exposed rock, and charcoal pits.  The 23 
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frames were developed using an aerial point sampling approach (Norton-Griffiths, 1988): several 1 

thousand geotagged aerial photos were taken over parallel transects spaced 1 km apart at 2 

approximately 488 m (height-above-ground) in 1983/1985 and then again in 2012/2013, 3 

resulting in approximately 7 aerial natural color analogue photos per frame with a ground-4 

sampling-distance  of < 1 cm in 1983/1985 and 5 aerial natural color digital photos per frame 5 

with a ground-sampling-distance of 6.5 cm in 2012/2013.  The retrieval dates are shown in 6 

Table 1.  A team of six technicians interpreted the photos on a rolling basis to minimize potential 7 

bias and errors that can occur from manual classification by different interpreters and for 8 

different years.  The proportion of each land cover type (0-100%) was determined by manually 9 

classifying a grid of 320 randomly distributed points superimposed over each photo.  For each 10 

year, all land cover types were represented and classified, but not all sample frames were 11 

interpreted and classified (Figure 1).  The interpretations were validated via site visits and 12 

meetings with community stakeholders.  The estimates were then averaged over the photos 13 

across interpreters to get the proportions for each frame.  Further details on the 1983/1985 and 14 

2012/2013 campaigns can be found in EcoSystems Ltd (1983), EcoSystems Ltd (1987), and 15 

Lamprey (2013).  16 

2.2 Macro-scale data handling and processing 17 

 Forty-three non-remote sensing (climatic, hydrologic, socioeconomic, and topographic) 18 

and sixteen remote sensing (phenological) predictors of land cover change were compared and 19 

subset for model-building with the sample frames.  The predictors were selected, because they 20 

are gridded seamlessly across SSA and could therefore facilitate continuous and consistent land 21 

cover classification across the continent.  Either slowly-changing (long-term average/one-time 22 

value) or annually-changing predictors were considered.  The slowly-changing predictors and 23 
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their sources are shown in Table 2.  Using these predictors alone could streamline the modeling 1 

process.  However, in reality, phenology, climate, and population change frequently, so these 2 

predictors were derived on an annual basis as well.  The handling and processing of annually-3 

changing predictors are discussed in Sections 2.2.1-2.2.3.  For the remainder of the paper, 4 

annually-changing variables include a “.d” extension.  All of the data was projected to Africa 5 

Equidistant Conic (m) to facilitate distance calculations.  The predictors were resampled to the 6 

finest resolution data (90 m) and aggregated to 5 km resolution for model-building. 7 

2.2.1 Climate 8 

BIOCLIM variables were chosen for the analysis, because they 1) are commonly used for 9 

similar studies that require biologically meaningful climate information and 2) have been 10 

projected mid-21st century at high spatial resolution for SSA (see Platts et al., 2014).  Two 11 

additional climate parameters were included in the analysis, because they are part of the Platts et 12 

al. (2014) dataset:  atmospheric demand for moisture (Potential Evapotranspiration- PET) and 13 

the Moisture Index.  The BIOCLIM variables were computed on an annual basis from 1983-14 

2012 using monthly temperature, shortwave incoming radiation, and precipitation.  The variables 15 

were computed using the “biovars” function in the “dismo” package in R (Hijmans et al., 2015).  16 

As with the Platts et al. (2014) dataset, PET was estimated using the Hargreaves and Samani 17 

(1985) approach. 18 

The temperature/radiation and precipitation predictors were taken from the Princeton 19 

University high resolution meteorological forcing (PHF) (Chaney et al., 2014) and the Climate 20 

Hazards Group InfraRed Precipitation with Stations (CHIRPS) (Funk et al., 2014) datasets, 21 

respectively.  PHF originally spanned 1979-2008, but was extended to 2012 for this study.  It is a 22 

downscaled version of the Princeton University global meteorological forcing (PGF) dataset 23 
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(Sheffield et al., 2006) for SSA.  It assimilates new observation data, specifically station data 1 

from the U.S. National Climatic Data Center (NCDC) Integrated Surface Database (ISD) and has 2 

undergone more rigorous correction than the global dataset.  PHF is a blend of the most up-to-3 

date observation-based, remote sensing, and reanalysis data sources: the National Centers for 4 

Environmental Prediction–National Center for Atmospheric Research (NCEP-NCAR) reanalysis, 5 

Global Precipitation Climatology Project, Tropical Rainfall Measuring Mission (TRMM), the 6 

Climatic Research Unit (CRU), and the Surface Radiation Budget.  Downscaling is performed 7 

using bilinear interpolation weighted by elevation.  The dataset includes precipitation, 8 

minimum/maximum temperature, pressure, shortwave and longwave radiation, specific 9 

humidity, and wind speed at a daily time step and 0.1° (~10 km at the equator) resolution.  10 

CHIRPS is available at pentad (5-day) intervals and 0.05° (~ 5km at the equator) spatial 11 

resolution from 1981-2012.  Like PHF, CHIRPS is a blend of several observation-based, remote 12 

sensing, and reanalysis sources: geostationary thermal infrared satellite observations from the 13 

Climate Prediction Center and National Climatic Data Center; TRMM; and NOAA-NCAR.  14 

CHIRPS was selected as the precipitation source over PHF, because it incorporates the largest 15 

collection of ground-based precipitation data in East Africa and bias-correction is performed 16 

using the Climate Hazards Precipitation Climatology (Funk et al., 2015). 17 

2.2.2 Population density 18 

Population density was derived from the UNEP/GRID-Sioux Falls African Population 19 

Distribution Database (APDD) on an annual basis from 1983-2012.  APDD consists of 20 

population density at a spatial resolution of 2.5 arc-minutes ° (~ 5km at the equator) for base 21 

years 1960, 1970, 1980, 1990, and 2000.  The grids are derived from population statistics at 22 

various administrative levels (defined by vector polygons) and temporal scales, depending on the 23 
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availability of national population statistics.  The approach taken to convert population polygons 1 

to gridded population is detailed in Deichmann (1996).  Each grid cell represents “population 2 

potential”, based on its proximity to the transportation network (roads, railroads, and navigable 3 

rivers, and major towns/cities).  Population at a given administrative level is then disaggregated 4 

according to the population potential.  Grid cells that are closer to the network have higher 5 

coefficients and therefore receive a larger proportion of the population than grid cells further 6 

away.  The base years are then extrapolated with an exponential growth/decay function (Davis, 7 

1995).  For consistency, the same function was used to distribute population between base years 8 

on an annual basis for each grid cell: 9 

𝐏𝐢,𝐣,𝐭 = 𝐏𝐢,𝐣,𝐓𝐞
∆𝐭𝐤𝐢,𝐣 (2) 

𝐤𝐢,𝐣 = 𝐥𝐧(𝐏𝐓+𝟏𝟎𝐧 𝐏𝐓+𝟏𝟎(𝐧−𝟏)⁄ ) 𝟏𝟎⁄  (3) 

Pi,j,t is the interpolated population/population density for a given year (t) and at grid cell i, j, Pi,j,T 10 

is the population/population density for a given base year (period = 10 years), ∆t is the change in 11 

time from the base year to the year being interpolated, and ki,j (Equation 2) is the growth/decay 12 

coefficient.  The growth/decay coefficient is defined by PT+10(n-1) (initial base year for iteration n) 13 

and PT+10n (last base year for iteration n).  The denominator was set to ten, because ki,j accounted 14 

for decadal trends.  After 2000, population statistics were extrapolated to 2012 using the 1990-15 

2000 growth/decay coefficients. 16 

2.2.3 Remote Sensing Predictors 17 

The National Aeronautics and Space Administration’s Global Inventory Modeling and 18 

Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) Version 3 19 

(NDVI3g) (Pinzon and Tucker, 2014) was used to estimate the remote sensing predictors.  NDVI 20 

is a ratio-based vegetation index derived from Earth observation (AVHRR) surface reflectance in 21 
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the visible red and near infrared (NIR).  NDVI approaching one (zero) is indicative of dense 1 

vegetation (bare soil).  NDVI3g is available at 0.08° (~8km resolution at the equator) spatial 2 

resolution and at a 15-day timestep from 1983-2013.  NDVI3g has been compared to other long-3 

term global vegetation records and is considered the most appropriate for trend analysis (Tian et 4 

al., 2015). 5 

The predictors were derived from NDVI using harmonic regression (Eastman et al., 6 

2009) on an annual basis from 1983-2012.  Linear harmonic regression estimates the amplitude 7 

(maximum) and phase (timing) of a fitted time series, but unless higher order harmonics are 8 

introduced, linear harmonic regression is susceptible to outliers and multimodal regimes 9 

commonly found in the tropics.  To overcome these obstacles, non-linear harmonic regression 10 

(Carrão et al., 2010) was used to estimate five phenological predictors: 11 

𝐍𝐃𝐕𝐈𝐢,𝐣,𝐓 = 𝐌𝐢,𝐣 + 𝐀𝐢,𝐣 𝐜𝐨𝐬(𝛚𝟎𝐭 + ∅ + 𝛂𝐜𝐨𝐬(𝝎𝟎𝐭 + 𝛗)) (1) 

Where NDVIi,j,T is NDVI3g at grid cell i, j and over period T, which in this case was 24, 12 

because non-linear harmonic regression was computed on an annual basis from the 15-day data; 13 

M is the intercept (annual mean NDVI); A is the amplitude; ϕ is the annual phase; and α and φ 14 

are non-linear terms defining the strength of non-linearity (asymmetry) and non-linear phase 15 

(deceleration/acceleration of asymmetry), respectively.  The frequency (ω0) equals 2π/T.  The 16 

approach can be reduced to a linear harmonic oscillator by setting αcos(ω0t+φ) to zero.  The 17 

non-linear predictors were derived at each grid cell using the “nlsLM” function in the 18 

“minipack.lm” package in R (Elzhov et al., 2015).  nlsLM uses the Levenberg-Marquardt 19 

optimization method (Moré, 1978) to find the non-linear least-squares fit.  The function was 20 

constrained by the seed and boundary conditions described in Carrão et al., (2010).  One 21 

thousand iterations at each grid cell were performed to avoid fitting local optima.  Linear terms 22 
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(A and ϕ) were computed for the analysis as well, using the “lm” function in the “stats” package 1 

in R (https://cran.r-project.org/), because they are more efficient and are easier to interpret. 2 

2.3 Land-cover model development using remote sensing and non-remote sensing predictors 3 

Land cover models were developed at both levels of specificity and involved three steps: 4 

1) data reduction and model feasibility; 2) functionalizing the relationships between selected 5 

predictors and each land cover class; and 3) evaluation.  Seventy percent of the samples 6 

(N=1,576) were used for model calibration and 30% of the samples (N=676) were used for 7 

model validation. 8 

Machine learning was used to omit redundant predictors and determine the feasibility of 9 

using the remaining predictors to predict each land cover type, given the large number of 10 

predictors and possible inter-correlations.  Machine learning techniques lead to stable results 11 

when the number of predictors is large and are less affected by non-linearity and 12 

multicollinearity than other automated fitting routines (Binder and Tutz, 2008).  The Breiman's 13 

random forest algorithm (Breiman, 2001) available in the “randomForest” package in R was 14 

selected in particular, because it is less susceptible to over-fitting and yields higher prediction 15 

accuracy than other machine learning algorithms (Fernández-Delgado et al., 2014).  The Random 16 

Forest (RF) algorithm yields an ensemble model, bagged from multiple and independent decision 17 

trees consisting of various combinations of predictors and sample subsets.  The performance of 18 

the ensemble is measured with a pseudo coefficient of determination (pseudo-R
2
), which is one 19 

minus the ratio of the cross-validated mean squared error (MSE) of the prediction to the variance 20 

of the observed data.  The importance of each predictor in the ensemble is also quantified and is 21 

defined by the percent increase in cross-validated MSE when a predictor is removed from the 22 

ensemble.  Once the predictors were ranked, the “rfcv” function was used to determine the 23 
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number of predictors to use to develop functional relationships for each land cover class.  Rfcv 1 

computes the cross-validated MSE versus the number of predictors included in the ensemble in 2 

descending order of importance. 3 

The drawback of RF is that it results in complex relationships that are difficult to 4 

interpret.  Generalized Additive Models (GAMs) (Hastie and Tibshirani, 1990) were used to 5 

build functional relationships on the subsets of important predictors identified with RF, because a 6 

number of studies have successfully estimated the proportion of crop area with socio-ecological 7 

predictors and GAMs (Grace et al., 2014; Husak et al., 2008; Marshall et al., 2011); like RF, 8 

GAMs are not severely impacted by non-linear data; and unlike RF, GAMs are relatively simple 9 

and easy to interpret.  Since the response variable (proportion of land cover type) was continuous 10 

and bounded from 0-100%, the data was fitted using a quasi-binomial distribution 11 

(link=logistic).  The logistic GAM predicts the log-likelihood of an event (probability of 12 

success/probability of failure) using, in our case, a series of cubic spline functions: 13 

𝐥𝐨𝐠 (
𝐩𝐣

𝟏 − 𝐩𝐣
) = 𝛃𝟎 +∑𝐟𝐢,𝐣(𝐱𝐢,𝐣) 

(4) 

Where p is the probability of a land use/cover type for sample frame j, β0 is the intercept, and 14 

fi,j(xi,j) is the cubic spline function for predictor xi at sample frame j.  The GAMs were developed 15 

with the “gam” function in the “mgcv” package in R.  Model calibration was evaluated with 16 

explained part and overall deviance.  Deviance is the log-likelihood alternative to variance.  Part 17 

deviance is the deviance explained when the target predictor is removed from a GAM minus the 18 

overall deviance.  Another pseudo-R
2
 statistic (1-model deviance/null deviance) was also 19 

computed to compare calibration statistics with validation statistics (R
2
 and MSE).   20 

In order to demonstrate how the models can be used for macro-scale application, the final 21 

GAMs developed were used to reconstruct the annual change in agriculture and natural 22 
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vegetation and to perform a trend analysis from 1983-2012 at each sample frame.  Trends were 1 

estimated using the Theil-Sen technique, which computes the median of all possible pairwise 2 

slopes in a time series.  The approach has been used, for example, to measure long-term trends in 3 

NDVI (de Beurs and Henebry, 2005), because it is not significantly impacted by outliers or non-4 

linearity.  The significance of each trend was assessed using the Mann-Kendall statistic.  Trends 5 

were masked at the 99.9% confidence band. 6 

3. Results 7 

3.1 Land cover sample frame summary 8 

The distribution of land cover over the sample frames is illustrated with a boxplot in 9 

Figure 2.  Agriculture and natural vegetation land cover (level one) were normally distributed, 10 

with agriculture having a higher median (54.04%) and lower spread (29.32% and 76.33% at the 11 

first and third quartiles) than natural vegetation (median=39.72%, first quartile=16.21%, and 12 

third quartile=65.67%).  The proportion of urban and miscellaneous land cover was considerably 13 

lower (median=4.00% and 0%, respectively) and non-linear, each having several high proportion 14 

outliers.  The disaggregated land cover (level two) distributions, with the exception of crops, 15 

were non-linear, each having long right tails.  Crops represented the largest proportion of land 16 

cover (median=37.52%) and had the largest spread (19.43% and 58.46% at the first and third 17 

quartiles), followed by savanna (median=15.79%, first quartile=3.80%, and third 18 

quartile=31.91%).  Wetlands represented the smallest proportion of land cover (median=0%), 19 

with sample frames not exceeding 75%, while forest represented the second smallest proportion 20 

of land cover (median=2.22%), but had the longest right tail with proportions reaching 100%. 21 

3.2 Data reduction 22 
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 The top remote sensing and non-remote sensing predictors considered are ranked in 1 

descending order of importance for agriculture and natural vegetation using bar graphs in Figure 2 

3.  The RF ensemble models using non-remote sensing predictors performed moderately well for 3 

agriculture (pseudo-R
2
=0.69) and natural vegetation (pseudo-R

2
=0.69), but poorly for the more 4 

non-linear land cover distributions (urban pseudo-R
2
=0.37 and miscellaneous pseudo-R

2
=0.50).  5 

The RF ensemble models using remote sensing predictors all performed poorly, but incorporated 6 

a smaller number of predictors than the non-remote sensing ensembles: agriculture (pseudo-7 

R
2
=0.49), natural vegetation (pseudo-R

2
=0.50), urban (pseudo-R

2
=0.22), and miscellaneous 8 

(pseudo-R
2
=0.33).  For the non-remote sensing ensembles, annually-changing predictors were 9 

more important than slowly-changing predictors, and population density and climate predictors 10 

consistently outranked topographic or hydrologic predictors.  Popd.d, popd, bio7.d, bio14.d, and 11 

bio3.d were consistently ranked the most important predictors of agriculture and natural 12 

vegetation proportions.  Omitting popd.d, the most important predictor for agriculture, for 13 

example, led to a more than 65% increase in ensemble MSE.  Given that popd.d and popd were 14 

both important, model results were compared with popd.d and popd individually and combined 15 

as anomalies (popd.d /popd).  Ensemble performance was better when the two predictors were 16 

considered separately.  The most important remote sensing predictors were less influential than 17 

popd.d.  strn, ampn.d, and ampl.d were more equally important for agriculture and natural 18 

vegetation, followed by phsl and phsn. 19 

 The importance of predictors of level two (crops, savanna, and forest) proportions are 20 

ranked in Figure 4.  The ranking was more variable for level two classifications, but popd.d 21 

remained the most important predictor in each case.  The level two RF ensemble models 22 

predicted less variability than the level one RF ensemble models and the non-remote sensing 23 
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predictors outperformed the remote sensing predictors.  The non-remote sensing models 1 

performed moderately well for crops (pseudo-R
2
=0.63), savanna (pseudo-R

2
=0.62), and forest 2 

(pseudo-R
2
=0.61), but poorly for fallow (pseudo-R

2
=0.42), shrubs (pseudo-R

2
=0.54), wetlands 3 

(pseudo-R
2
=0.10), and agroforestry (pseudo-R

2
=0.55).  Precipitation-based climatic predictors 4 

(bio12.d, bio13.d, bio14.d, and bio16.d) were more important in the savanna ensemble than 5 

temperature-based climatic variables driving the crop ensemble.  For the forest simulation, 6 

topographic predictors (slp and topind) were more important than most of the climatic predictors.  7 

The remote sensing ensembles performed poorly for all of the level two land cover classes: crops 8 

(pseudo-R
2
=0.46), fallow (pseudo-R

2
=0.33), shrubs (pseudo-R

2
=0.44), savanna (pseudo-9 

R
2
=0.44), wetlands (pseudo-R

2
<1%), forest (pseudo-R

2
=0.46), and agroforestry (pseudo-10 

R
2
=0.41).  For crops, strn and ampl.d remained the most important predictors.  Maximum annual 11 

NDVI, as captured by ampl.d and ampn.d, were much more important for predicting the 12 

proportion of savanna.  Unlike other ensembles, which were driven by annually-changing 13 

predictors, the most important remote sensing predictors for forest cover were long-term 14 

averages. 15 

3.3 Building functional relationships 16 

 The GAMs were developed for moderately performing land cover classes and used 17 

considerably fewer predictors than the RF ensembles, because most of the predictors in the 18 

ensembles explained very little, if any variability.  This is illustrated in Figure 5, which shows 19 

MSE versus the number of predictors used in the non-remote sensing and remote sensing 20 

ensembles for forest.  For the non-remote sensing ensemble, MSE increased from 119.76 to 21 

120.49 after the 10
th

 predictor and leveled off after the 13
th

 predictor was introduced.  For the 22 

remote sensing ensemble, MSE increased from 120.49 to 163.34 and levelled off after the 7
th

 23 
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predictor was introduced.  For this reason, the GAMs were built with 10-13 of the highest ranked 1 

non-remote sensing predictors and additional predictors, namely popd, were removed after 2 

redundancies were identified in the GAM component functional plots and with significance tests 3 

(not shown).  GAMs were not constructed using the remote sensing predictors, because of the 4 

poor results of the ensembles and the inability of additional predictors to substantially improve 5 

the accuracy of the GAMs.  Similarly, non-remote sensing GAMs were not developed for urban, 6 

miscellaneous, fallow, shurbs, or wetlands. 7 

Figures 6 and 7 show the functional relationships of the predictors used for estimating 8 

the proportion of agriculture and natural vegetation.  Each model explained 61.5% (pseudo-9 

R
2
=0.66) and 61.4% (pseudo-R

2
=0.66) of model deviance with nine and seven predictors, 10 

respectively.  The confidence intervals tended to be wider at proportion extremes, because fewer 11 

data points were available to train the models.  The relative importance of each predictor, as 12 

defined by part deviance and other calibration statistics are shown in Table 3 for the land cover 13 

types that were considered feasible for model-building.  Popd.d remained the most important 14 

predictor and uniquely explained 7.0-26.2% of model deviance.  The log-likelihood of 15 

agriculture (natural vegetation) increased (decreased) rapidly as population density increased 16 

from 0 to 550 people•km
-2

, more gradually between 550 and 1200 people•km
-2

, and reversed 17 

beyond 1200 people•km
-2

.  The predictive power of the topographic and climatic variables 18 

dropped off sharply after popd.d.  For agriculture, bio14.d and topind were the second and third 19 

most important predictors, but explained only 1.9% and 1.6% unique deviance.  As seen in the 20 

partial functional plots, the proportion of agriculture was highest in high production zones 21 

(medium population density) on ridges and crests where topind was low and for very wet tropical 22 

areas where bio14.d was high and semi-arid areas where bio14.d was low.  For natural 23 
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vegetation, temperature predictors, bio4.d and bio7.d, explained the second and third highest 1 

unique deviance after popd.d (2.0% and 1.3%).  As seen in the functional plots, low populated 2 

areas with more temperature seasonality, or inter-annual variation, and less isothermality (higher 3 

non-tropical latitudes) tended to have higher proportions of natural vegetation (savanna and 4 

shrubs).  For the level two classifications, calibration was more difficult and yielded poorer 5 

relationships.  Popd.d was the most important predictor and explained 7.0 – 16.4% unique 6 

deviance.  The predictive power of the topographic and climatic variables was more equally 7 

distributed than for the level one classification. 8 

In all cases, the R
2
 for the validation subset was lower than the pseudo-R

2
 from the 9 

calibration subset: agriculture (∆R
2
=-0.04), natural vegetation (∆R

2
=-0.01), crops (∆R

2
=-0.03), 10 

savanna (∆R
2
=-0.01), and forest (∆R

2
=-0.06) (Figure 8).  With the exception of the crops GAM, 11 

level two GAMs tended to under-predict high proportions of land cover (savanna and forest) and 12 

contained numerous outliers. 13 

3.4 Trend analysis 14 

The GAMs for agriculture and natural vegetation were used to simulate trends in the 15 

annual proportions for the sample frames from1983-2012 as part of the evaluation to 16 

demonstrate how the approach could be used for a retrospective analysis.  The proportion of 17 

agriculture for 1983 and 2012 are shown in Figure 9a and 9b, while trends over the 30 year 18 

period are shown in Figure 9c.  The high potential agricultural zone (wet highlands) in Western 19 

Kenya experienced the largest increase in simulated agricultural cover (> 1% per year or 30% 20 

over the 30-year period).  A time series of the strongest trend (1.68% per year) is shown in 21 

Figure 9d.  Simulated population density was at 145 people•km
-2

 in 1983 for this sample frame, 22 

which steadily increased to 478 people•km
-2

 in 2012.  Closer to the lake, which consists of drier 23 

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-33, 2016
Manuscript under review for journal Earth Syst. Dynam.
Published: 9 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



20 
 

marginal mixed farming, trends were insignificant at the 99.9% confidence band or relatively 1 

weak (< 1 % per year).  Similar patterns were seen for the marginal mixed farming and high 2 

potential agricultural zones of central Kenya as well.  The only decreasing trend in agricultural 3 

cover was seen in Kitale town (-1.40% per year).  The time series is also shown in Figure 9d.  4 

Population growth in Kitale was 1,110 people•km
-2

 in 1983, which is near the threshold of 5 

declining agriculture cover versus population density at 1,200 people•km
-2

.  By 2009, when the 6 

largest decrease in agriculture cover occurred, from 51.0 to 29.5%, population density had 7 

steadily increased and surpassed another apparent threshold above 3,000 people•km
-2

.   The 8 

direction and relative magnitude of trends in natural vegetation (not shown) generally 9 

corresponded inversely to trends in agriculture, but were negatively-weak (maximum=-0.4% per 10 

year or -12% over the 30-year period). 11 

5. Discussion 12 

The results make two important contributions that the land surface modeling community 13 

should consider to improve LULCC detection: 1) a socioeconomic variable (population density) 14 

was the highest ranked predictor of LULCC and had considerably more predictive power than 15 

ecological predictors and 2) non-remote sensing predictors in all cases out-performed remote 16 

sensing predictors. 17 

The global increase in agricultural land cover has been attributed to the demand for food 18 

and other agricultural commodities by a growing population (Pongratz et al., 2008).  In SSA, 19 

smallholder farms, which support the majority of the labor force, are small (half are < 1.5 ha) and 20 

concentrated in densely populated areas, while large portions of arable farmland in sparsely 21 

populated areas remain underutilized (Jayne et al., 2003).  This underutilization is due primarily 22 

to a lack of investment in infrastructure and unequitable tenure systems, which forces farmers to 23 
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grow more on less land.  This relationship is confirmed by rural population survey data in Kenya, 1 

which showed that fertilizer input use and net farm income per hectare increase until 2 

approximately 550 persons•km
-2

 and then sharply decline, because farm sizes shrink, surplus 3 

production decreases, and farmers must adopt costlier strategies (e.g. zero-grazing) to maximize 4 

revenue (Jayne and Muyanga, 2012).  The functional relationship for population density and 5 

steady increase in area under cultivation in high production zones demonstrated by the trend 6 

analysis in this study, corresponds to this finding, as area under cultivation increased rapidly to 7 

approximately 550 persons•km
-2

 and then increased more gradually with higher population 8 

density until 1200 persons•km
-2

.  Few sample frames had population densities greater than 1,200 9 

persons•km
-2

, as was seen in Kitale town, so it is difficult to know if this functional relationship 10 

holds for very high population densities.  At least to 2008, Kitale experienced a growth rate of 11 

12%, well above the national average (7%), due to persistent drought and out-migration from 12 

neighboring high production zones (Majale, 2008), so perhaps this relationship is reasonable.  13 

Although the functional relationship for population density corroborates household surveys in 14 

Kenya and other agrarian countries in SSA, it should be further scrutinized, because land tenure 15 

in SSA is complex (Place, 2009) and the dependency of LULCC predictors on location and 16 

spatial scale can be high (Rindfuss et al., 2004). 17 

Population density estimates vary widely (Wilson, 2014) and given its fundamental 18 

importance to the proposed model framework, future work should aim to integrate a more 19 

dynamic product that better accounts for inter-annual variability and realistic representation of 20 

current and projected population density.  To the authors’ knowledge, this was the first attempt 21 

to make a population product dynamic (annually-changing).  However, the approach is 22 

essentially tracking decadal trends that explain a significant portion of inter-annual variability.  23 
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In reality, population density can show high inter-annual variability due to migration and other 1 

factors.  Regarding the product itself, changes in population density do not necessarily “grow” 2 

from transportation networks and are influenced by important feedbacks.  In addition, the 3 

extrapolation method used is efficient and can be projected indefinitely, but does not capture 4 

complex demographics that other methods do and can lead to “runaway” growth/decline (Baker 5 

et al., 2008).  Finally, there is no consensus on which population product to use, however, in the 6 

future, other products (e.g. Afripop) should be compared against the product used here or 7 

combined to make a model ensemble. 8 

This paper highlights the importance of gridded socioeconomic data in mapping LULCC, 9 

but gridded macro-scale datasets are almost exclusively ecological in nature.  The biggest gains 10 

in LULCC prediction could be made, therefore, by developing gridded macro-scale 11 

socioeconomic data from existing country-level products, such as the Human Development 12 

Index.   More minor gains could be made by integrating ecological predictors not used in this 13 

study, such as soil type and properties.  Gridded soils data exists globally from the International 14 

Soil Reference and Information Center, but was not considered in this study, because it is a one-15 

time value and does not capture the dynamic nature of soils or its complex relationship with 16 

LULCC.  A dynamic soils product was recently developed for the MODIS era (see Vågen et al., 17 

2016) and could be a powerful tool for LULCC detection, especially if it is back-casted over the 18 

full temporal range of other predictors. 19 

Grace et al. (2014) developed GAMs to predict cropped area in Kenya using ecological 20 

predictors (rainfall, elevation, NDVI, slope, and the topographic wetness index) and explained 21 

much of the deviance in cropped area (41.9-81.4%).  Although the models used different 22 

predictors for different years and production zones, and the definition of cropped area and the 23 

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-33, 2016
Manuscript under review for journal Earth Syst. Dynam.
Published: 9 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



23 
 

degree of smoothing were not explicit, the study highlights that multicollinearity may be 1 

obscuring the importance of ecological predictors.  Population density tends to be highly 2 

correlated with and could be suppressing the explanatory power of these predictors, though the 3 

partial deviance statistics did not reflect this.  In addition, the random forest algorithm accounts 4 

for multicollinearity, but other techniques could be introduced to further reduce these effects.  5 

For example, Principal Components Analysis could be used to develop temperature and 6 

precipitation indices that integrate all or some of the BIOCLIM predictors, given the large 7 

number analyzed. 8 

Phenological patterns extracted from continuous Earth observation based NDVI have 9 

been widely used to map LULCC over long time periods, given the lack of higher spatial and 10 

spectral resolution data before the MODIS era (Ali et al., 2014; Bie et al., 2012).  These studies 11 

show that vegetation periodicity is highly variable for a given land cover type and that long-term 12 

averages of phenological predictors are more reliable for mapping land use/cover.  Indeed, many 13 

of the most important remote sensing predictors (particularly for forests) were long-term 14 

averages, but they still greatly under-predicted LULCC when compared against non-remote 15 

sensing predictors.  Perhaps the main difficulty in using long-term Earth observation data for 16 

LULCC estimation is the coarseness of the data and the rapid change in vegetation that often 17 

occurs over small spatial scales.  Population density, which was a much stronger predictor, on 18 

the other hand, may well be captured using moderate resolution data, because this predictor 19 

changes more gradually over space.  An analysis of the non-remote sensing and remote sensing 20 

predictors together (not shown) revealed a potential avenue to improve remote sensing LULCC 21 

detection using long-term vegetation records.  The combination of non-remote sensing and 22 

remote sensing predictors over the period analyzed moderately increased the accuracy of 23 
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estimates for natural vegetation, savanna, and forest land cover types.  Meaning for these 1 

important land cover types, large gains could potentially be made by integrating long-term 2 

vegetation datasets downscaled with Landsat imagery into the model framework. 3 

6. Conclusion 4 

This study developed and evaluated a simple method to provide consistent estimates of 5 

LULCC annually over 30 years at 5 km resolution using non-parametric functional relationships 6 

with a small subset of socio-ecological predictors (p ≤ 10).  Functional relationships were 7 

developed after data mining 43 geospatial datasets that are available seamlessly across SSA, 8 

which can be used for retrospective pre-1981 or prospective mid- and late-21
st
 century analyses.  9 

The relationships are intuitive and tunable, making their use practical for decision-makers to 10 

identify intervention hotspots and develop land management scenarios.  Model validation, 11 

performed with multi-temporal proportions of major land cover types in Kenya, revealed that a 12 

number of activities should be performed to improve the predictive power of the models for 13 

practical use.  These activities primarily focus on integrating improved existing or newly 14 

developed geospatial (particularly socioeconomic) datasets into the proposed model framework.  15 

With these improvements, land surface and LULCC modelling could be greatly enhanced and 16 

the consequence of the latter on the earth system can be more fully understood.  17 
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Figure 1.  Study Area: 1,126 25 km2 sample frames demarcating the proportion of land 

use/cover types estimated from aerial photo interpretation and ground surveys.  Photos were 

taken and surveys were performed in western Kenya in 1983 and 2012, north central Kenya 

(Machakos area) in 1985 and 2012, and south central Kenya (Makueni area) in 1985 and 2013.  

Source of remote sensing image and topographic map: Environmental Systems Research 

Institute (ESRI). 
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Figure 2.  Boxplot of the proportion of land cover types for two levels of classification (N = 

2,252).  The first and second levels of classification are shaded in orange and yellow, 

respectively. 
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Figure 3.  Percent mean squared error (MSE) increase after each of the top 20 non-remote 

sensing (A and C) and 16 remote sensing (B and D) predictors were omitted from the Random 

Forest ensemble model predicting the proportion of agriculture and natural vegetation in the 

calibration sample frames, respectively.  The models explained 69, 49, 69, and 50% of the 

proportion variability. 
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Figure 4.  Percent mean squared error (MSE) increase after each of the top 20 non-remote 

sensing (A, C, and E) and 16 remote sensing (B, D, and F) predictors were omitted from the 

Random Forest ensemble model predicting the proportion of crops, savanna, and forest in the 

calibration sample frames, respectively.  The models explained 63, 46, 62, 44, 62, and 46% of 

the proportion variability. 
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Figure 5.  Curves showing the mean squared error (MSE) of the predicted proportion of forest 

from the Random Forest ensembles parameterized with non-remote sensing (A) and remote 

sensing (B) predictors.  The number of predictors corresponds to the bar graphs in descending 

order of importance. 
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Figure 6.  Partial functional plots relating the proportion (probability) of agriculture expressed as 

the log of odds ratio with A) population density (popd.d); B) precipitation of driest month 

(bio14.d); C) topographic wetness index (topind); D) mean diurnal range (bio2.d); E) 

precipitation seasonality (bio15); F) temperature seasonality (bio4.d); G) slope (slp); H) moisture 

index (mi.d); and isothermality (bio3.d).  The probabilities are defined using a logistic model 

with cubic smoothing splines (N=1,576). 

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-33, 2016
Manuscript under review for journal Earth Syst. Dynam.
Published: 9 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



41 
 

 

Figure 7.  Partial functional plots relating the proportion (probability) of natural vegetation 

expressed as the log of odds ratio with A) population density (popd.d); B) temperature 

seasonality (bio4.d); C) temperature annual range (bio7.d); D) slope (slp); E) precipitation of the 

driest month (bio14.d); F) isothermality (bio3.d); and G) potential evapotranspiration (pet.d).  

The probabilities are defined using a logistic model with cubic smoothing splines (N=1,576). 
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Figure 8.  Predicted versus observed proportion of agriculture (A); natural vegetation (B); crops 

(C); savanna (D); and forest (E) for the validation subset (N=676).  The 1:1 line is drawn through 

the origin. 
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Figure 9.  Simulated percent agriculture for sample frames in 1983 (A) and 2012 (B); change in 

agriculture per year over the 30 year (1983-2012) period (C); and time series of the strongest 

positive (red) and negative (blue) trend (D).  Trends were determined with a Theil-Sen estimator 

and masked for significance using the Man-Kendall statistic at the 99.9% confidence band. 
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Table 1. Dates aerial sample surveys were conducted 

Sample Region First Survey Second Survey 

Lake Victoria November 1983 October 2012 

Machakos March - May 1985 November - December 2012 

Makueni June 1985 February 2013 
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Table 2.  Slowly-changing (long-term average/one-time value)  predictors considered for LULCC estimation and their data sources.  Climate, remote 

sensing, and population predictors were considered as annually-changing as well.  Annually-changing variables are distingusihed with a ".d" extension.

Category Variable Description Units Source

Climate bio1 Annual Mean Temperature °C

bio2 Mean Diurnal Range °C

bio3 Isothermality

bio4 Temperature Seasonality °C

bio5 Maximum Temperature of Warmest Month °C

bio6 Minimum Temperature of Coldest Month °C

bio7 Temperature Annual Range °C

bio10 Mean Temperature of Warmest Quarter °C

bio11 Mean Temperature of Coldest Quarter °C

bio12 Annual Precipitation mm

bio13 Precipitation of Wettest Month mm

bio14 Precipitation of Driest Month mm

bio15 Precipitation Seasonality mm

bio16 Precipitation of Wettest Quarter mm

bio17 Precipitation of Driest Quarter mm

mi Moisture Index

pet Potential Evapotranspiration mm

Hydrology dtw Depth to Groundwater mm

gwp Groundwater Productivity L•s
-1

gws Groundwater Storage mm

Phenological ampl Linear Amplitude

ampn Non-linear Amplitude

lint Linear Intercept (Annual Mean)

nint Non-linear Intercept (Annual Mean)

phsl Linear Phase

phsn Non-linear Phase

strn Non-linear  Strength (asymmetry)

warpn Non-linear Warp (asymmetry)

Socioeconomic popd Population Density # of people•km
-2

http://na.unep.net/

Topgraphy asp Aspect ° http://www.cgiar-csi.org/

elev Elevation m

slp Slope %

topind Topgraphic Wetness Index

http://ecocast.arc.nasa.gov/

http://www.bgs.ac.uk/

https://www.york.ac.uk/
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Table 3. Calibration statistics of the generalized additive models used to predict the proportion of land 

cover (N=1,576). Predictors are significant at the 99.9% confidence band. 

Land cover type Variable ID Part Deviance (%) pseudo-R
2
 Deviance (%) 

Agriculture popd.d 20.0 0.66 61.5 

  bio14.d 1.9     

  topind 1.6     

  bio2.d 1.4     

  bio15 1.3     

  bio4.d 1.2     

  slp 0.9     

  mi.d 0.8     

  bio3.d 0.7     

Natural Vegetation popd.d 26.2 0.66 61.4 

  bio4.d 2.0     

  bio7.d 1.3     

  slp 1.2     

  bio14.d 0.6     

  bio3.d 0.5     

  pet.d 0.4     

Crops popd.d 15.5 0.56 52.1 

  bio2.d 3.5     

  bio15 1.8     

  bio3.d 1.7     

  bio4.d 1.4     

  pet.d 1.0     

  bio14.d 0.7     

  bio16.d 0.7     

Savanna popd.d 7.0 0.56 55.7 

  bio13 3.7     

  bio12.d 2.4     

  topind 2.2     

  bio16 2.2     

  bio7.d 1.6     

  bio14.d 1.6     

  bio17.d 1.4     

Forest popd.d 16.4 0.57 61.2 

  bio16.d 4.3     

  mi.d 2.1     
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  bio3.d 2.0     

  bio12 1.6     

  pet.d 1.3     

  elev 1.0     

  topind 0.7     

  bio14.d 0.7     

  slp 0.7     
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